Evaluasi Kinerja Mesin Pengering Surya Type Kolektor Pelat Datar Sebagai Pengering Cabai yang Efektif

  • Roy Lamrun Sianturi Universitas HKBP Nomensen
  • Wilson Sabastian Nababan Teknik Mesin Universitas HKBP Nommensen
  • Suriady Sihombing Teknik Mesin Universitas HKBP Nommensen
Keywords: Pengering tenaga surya, Kolektor pelat datar, Pengering cabai, Efisiensi termal, Laju penghilangan kelembapan

Abstract

Studi ini menyelidiki efektivitas mesin pengering tenaga surya yang memanfaatkan sistem Kolektor Pelat Datar untuk pengeringan cabai. Studi ini bertujuan untuk menilai efisiensi pengering dalam berbagai kondisi lingkungan. Dalam studi ini, bertujuan untuk menilai efisiens dan mengevaluasi kinerja pengering cabai yang memanfaatkan energi matahari dengan sistem kolektor pelat datar Kolektor berukuran 2 meter x 0,8 meter digunakan untuk menangkap energi matahari, yang kemudian dialirkan ke ruang pengeringan berisi tiga rak baja tahan karat. Eksperimen menunjukkan bahwa pengering mampu menghasilkan suhu hingga 80°C. Pengukuran radiasi matahari dan kelembaban menunjukkan hubungan erat antara intensitas matahari siang hari dan kondisi pengeringan yang ideal. Laju pengeringan mengikuti pola tipikal pengeringan tenaga surya, dengan fase awal yang cepat diikuti fase yang lebih lambat. Efisiensi pengering mencapai puncaknya pada siang hari. Hasil ini memvalidasi desain pengering sebagai solusi potensial untuk pengeringan hasil pertanian yang efisien dan berkelanjutan. Penelitian lebih lanjut akan difokuskan pada optimasi desain dan material.

References

[1] E. Getahun, M. A. Delele, N. Gabbiye, S. W. Fanta, P. Demissie, and M. Vanierschot, “Importance of integrated CFD and product quality modeling of solar dryers for fruits and vegetables: A review,” Sol. Energy, vol. 220, pp. 88–110, 2021.
[2] S. Şevik, A. Koçer, H. İnce, and F. E. Tombuş, “Determination of optimum tilt angle of the solar collector and evaluation of the position of the existing buildings in terms of solar potential,” Archit. Eng. Des. Manag., vol. 18, no. 6, pp. 812–828, 2022.
[3] S. Pandey, A. Kumar, and A. Sharma, “Sustainable solar drying: Recent advances in materials, innovative designs, mathematical modeling, and energy storage solutions,” Energy, p. 132725, 2024.
[4] G. D. Shekata, G. S. Tibba, and A. T. Baheta, “Recent advancements in indirect solar dryer performance and the associated thermal energy storage.,” Results Eng., p. 102877, 2024.
[5] M. Elgendi, M. N. AlMallahi, M. Mahmoud, M. A. Abdelkareem, and A. G. Olabi, “Experimental study on insulation and heat sink in solar drying system: A case study,” Case Stud. Therm. Eng., vol. 56, p. 104166, 2024.
[6] M. C. Gilago, V. R. Mugi, and V. Chandramohan, “Performance assessment of passive indirect solar dryer comparing without and with heat storage unit by investigating the drying kinetics of carrot,” Energy Nexus, vol. 9, p. 100178, 2023.
[7] C. Matavel et al., “Passive solar dryers as sustainable alternatives for drying agricultural produce in sub-Saharan Africa: advances and challenges,” Discov. Sustain., vol. 2, pp. 1–15, 2021.
[8] A. Ahmad and O. Prakash, “Development of mathematical model for drying of crops under passive greenhouse solar dryer,” Mater. Today Proc., vol. 47, pp. 6227–6230, 2021.
[9] M. Ndukwu et al., “Progressive review of solar drying studies of agricultural products with exergoeconomics and econo-market participation aspect,” Clean. Environ. Syst., vol. 9, p. 100120, 2023.
[10] J. Wang, A. S. Mujumdar, H. Wang, X.-M. Fang, H.-W. Xiao, and V. Raghavan, “Effect of drying method and cultivar on sensory attributes, textural profiles, and volatile characteristics of grape raisins,” Dry. Technol., vol. 39, no. 4, pp. 495–506, 2021.
[11] E. H. Bani Hani, M. Alhuyi Nazari, M. E. H. Assad, H. Forootan Fard, and A. Maleki, “Solar dryers as a promising drying technology: a comprehensive review,” J. Therm. Anal. Calorim., vol. 147, no. 22, pp. 12285–12300, 2022.
[12] Shimpy, M. Kumar, and A. Kumar, “Performance assessment and modeling techniques for domestic solar dryers,” Food Eng. Rev., vol. 15, no. 3, pp. 525–547, 2023.
[13] H. S. El-Mesery, A. I. El-Seesy, Z. Hu, and Y. Li, “Recent developments in solar drying technology of food and agricultural products: A review,” Renew. Sustain. Energy Rev., vol. 157, p. 112070, 2022.
[14] D. T. Embiale and D. G. Gunjo, “Investigation on solar drying system with double pass solar air heater coupled with paraffin wax based latent heat storage: Experimental and numerical study,” Results Eng., vol. 20, p. 101561, 2023.
[15] V. R. Mugi and C. V.P, “Comparison of drying kinetics, thermal and performance parameters during drying guava slices in natural and forced convection indirect solar dryers,” Sol. Energy, vol. 234, pp. 319–329, 2022, doi: https://doi.org/10.1016/j.solener.2022.02.012.
[16] P. Moghimi, H. Rahimzadeh, and A. Ahmadpour, “Experimental and numerical optimal design of a household solar fruit and vegetable dryer,” Sol. Energy, vol. 214, pp. 575–587, 2021, doi: https://doi.org/10.1016/j.solener.2020.12.023.
[17] A. Ahmad et al., “A comprehensive state-of-the-art review on the recent developments in greenhouse drying,” Energies, vol. 15, no. 24, p. 9493, 2022.
[18] A. Aacharya, C. Rissler, B. Baral, T. Lhendup, M. Andersson, and H. Davidsson, “Development of a novel solar dryer with an incorporated heat exchanger,” Sol. Energy, vol. 269, p. 112327, 2024.
[19] R. S. Gomez et al., “The Effect of Air Relative Humidity on the Drying Process of Sanitary Ware at Low Temperature: An Experimental Study,” Processes, vol. 11, no. 11, 2023, doi: 10.3390/pr11113112.
Published
2025-02-28
How to Cite
Sianturi, R., Nababan, W., & Sihombing, S. (2025). Evaluasi Kinerja Mesin Pengering Surya Type Kolektor Pelat Datar Sebagai Pengering Cabai yang Efektif. SPROCKET JOURNAL OF MECHANICAL ENGINEERING, 6(2), 20-29. https://doi.org/https://doi.org/10.36655/sprocket.v6i2.1849