https://jurnal.uhn.ac.id/index.php/mechanical/issue/feed SPROCKET JOURNAL OF MECHANICAL ENGINEERING 2024-02-27T11:07:40+07:00 Richard A. M. Napitupulu journalmechanical@uhn.ac.id Open Journal Systems <div id="ts-body">SPROCKET Journal of Mechanical Engineering (SJoME) is a scientific journal that contains the publication of research works, design and theoretical studies in the field of mechanical and mechanical engineering, including energy conversion, manufacturing, materials, product design design and technology management.&nbsp;SJoME is published by the Mechanical Engineering Study Program, Faculty of Engineering, HKBP Nommensen University, Medan, Indonesia.&nbsp;SJoME is published 2 (two) times a year, namely in February and August. <p>SPROCKET Journal of Mechanical Engineering (SJoME) in accordance with the Decree of the Director General of Higher Education, Research, and Technology Number 164 / E / KPT / 2021, dated December 27, 2021 concerning Accreditation Ratings for Scientific Journals period II of 2021, which states that SPROCKET Journal of Mechanical Engineering (SJoME) is accredited by SINTA 5 starting from Vol 1 No. 1 to Vol 5 No. 2.</p> </div> https://jurnal.uhn.ac.id/index.php/mechanical/article/view/1265 Studi Baja Karbon Rendah Terhadap Laju Korosi 2024-02-27T10:31:45+07:00 Erna Dwi Kusumawati ernadwikusumawati39@gmail.com Vera Pangni Fahriani vera.pangni@ft.unsika.ac.id <p>Korosi merupakan masalah yang serius dalam bahan logam, korosi dapat dikatakan terjadinya penurunan kualitas logam akibat reaksi kimia dengan lingkungannya terutama melalui proses elektrokimia yang melibatkan anoda, katoda, dan elektrolit. Korosi dapat merugikan secara teknis, dan mengurangi sifat logam mekanis ini terjadi pada berbagai jenis dalam konstruksi, kendaraan, hingga peralatan elektronik hal ini dikarenakan oleh faktor lingkungan seperti lingkungan asam yang dapat mempercepat korosi. Perlindungan korosi terhadap baja karbon rendah sangat penting dengan menggunakan metode perlindungan termasuk pelapisan permukaan, penggunaan inhibitor korosi. Studi ini menggunakan metode literatur dengan mengumpulkan data dari berbagai jurnal yang telah dipublikasikan. Penelitian dilakukan menggunakan elektrokimia dan uji berat hilang untuk memahami perilaku korosi baja kerbon rendah dalam berbagai kondisi, dan memberikan wawasan mengenai bagaimana melakukan penelitian ilmiah terkait dengan sifat dan perlindungan logam terhadap korosi. Sehingga perlindungan korosi pada baja karbon rendah perlu diterapkan secara efektif untuk mengurangi kerusakan dan memperpanjang umur produk logam tersebut.</p> 2024-02-27T00:00:00+07:00 ##submission.copyrightStatement## https://jurnal.uhn.ac.id/index.php/mechanical/article/view/1333 Upaya Pereduksian Emisi Karbon Dioksida (CO2) di Indonesia melalui Analisis Integrasi Power-to-Gas dengan PLTU Batubara 2024-02-27T10:31:46+07:00 Rauzan Fikri Muhammad Zaky dessy.agustina8@gmail.com Dessy Agustina Sari dessy.agustina8@staff.unsika.ac.id <p>Sektor pembangkit listrik sebagai punggung utama energi nasional masih didominasi oleh bahan bakar fosil khususnya batubara. Emisi gas karbon dioksida (CO<sub>2</sub>) yang dihasilkan dari proses pembakaran batubara menimbulkan banyak dampak buruk pada bidang lingkungan dan kesehatan masyarakat. Sebagai upaya reduksi emisi CO<sub>2</sub> yang dihasilkan, <em>Power-to-Gas</em> (PtG) menawarkan solusi yang efektif guna mengatasi masalah emisi dengan mengubahnya menjadi energi. Sistem PtG terdiri dari proses <em>carbon capture</em> (penangkapan karbon), elektrolisis dan metanasi. Melalui sistem PtG, emisi CO<sub>2</sub> dari PLTU (Pembangkit Listrik Tenaga Uap) dapat diubah menjadi gas metana (CH<sub>4</sub>) dalam bentuk <em>syngas </em>(gas sintesis). Metode pada studi ini adalah memetakan sebaran PLTU Indonesia di tahun 2021, memperkirakan emisi CO<sub>2</sub> dan mereduksinya melalui <em>carbon capture</em>, serta menghitung estimasi produksi <em>syngas</em>. Estimasi emisi CO<sub>2</sub> dari PLTU mencapai 62,5 juta ton dan mampu direduksi hingga 28,15 juta ton melalui pengintegrasian sistem PtG. Perolehan <em>syngas </em>diperkirakan mencapai 0,255 TSCF (<em>Triliun Standard Cubic Feet</em>) atau setara dengan 0,614% dari total cadangan gas alam Indonesia. Integrasi sistem PtG dengan PLTU batubara di Indonesia memiliki prospek yang menjanjikan dan memberikan peluang kajian lebih lanjut untuk mengenai pengembangannya.</p> <p>&nbsp;</p> <p>The electricity generation sector, which is the backbone of national energy, is still dominated by fossil fuels, especially coal. The carbon dioxide (CO<sub>2</sub>) emissions resulting from the combustion of coal have many adverse effects on the environment and public health. To reduce CO<sub>2</sub> emissions, Power-to-Gas (PtG) offers an effective solution to convert them into energy. The PtG system consists of carbon capture, electrolysis, and methanation processes. This system can convert CO2 emissions from coal-fired power plants into methane gas (CH<sub>4</sub>) in the form of syngas. The methodology used in this study involves mapping the distribution of Indonesian coal-fired power plants in 2021, estimating their CO<sub>2</sub> emissions, reducing them through carbon capture, and calculating the estimated syngas production. The estimated CO<sub>2</sub> emissions from the PLTU reach 62.5 million tonnes and can be reduced by up to 28.15 million tonnes through the integration of PtG systems. The acquisition of syngas is estimated to reach 0.255 TSCF (Trillion Standard Cubic Feet), or equivalent to 0.614% of Indonesia's total natural gas reserves. The integration of PtG systems with coal-fired power plants in Indonesia has promising prospects and provides opportunities for further study on its development.</p> 2024-02-27T00:00:00+07:00 ##submission.copyrightStatement## https://jurnal.uhn.ac.id/index.php/mechanical/article/view/1335 Evaluasi Menara Distilasi melalui Program Aspen Hysys 2024-02-27T10:31:46+07:00 Syabrina Alfisyahri Miledhiya dessy.agustina8@gmail.com Dessy Agustina Sari dessy.agustina8@staff.unsika.ac.id <p>PT XXX merupakan pabrik produksi asam formiat pertama dan satu-satunya di Asia Tenggara. Proses produksi yang berlangsung di dalam pabrik terdiri dari dua tahap utama, yaitu tahap pembuatan metil format dan tahap pembentukan asam formiat. Bahan baku utama yang digunakan dalam proses produksi ini diantaranya gas karbon monoksida (CO), metanol (CH<sub>3</sub>OH), katalis yang berupa kalium metoksida (KOCH<sub>3</sub>), dan air (H<sub>2</sub>O). Asam formiat merupakan salah satu bahan kimia yang dapat digunakan untuk kepentingan industri seperti dalam industri karet yaitu sebagai bahan koagulan karet alam dalam industri farmasi,terutama desinfektan obat-obatan dan dipakai sebagai sebagai zat pengawetan dalam industri tekstil digunakan dalam proses <em>drying</em> dan <em>finishing</em> sebagai <em>conditioner</em>, dalam industri kulit digunakan untuk menetralisasi kapur,juga juga digunakan untuk mengasamkan makanan ternak. Maka dari itu diadakannya perbandingan antara simulasi Aspen Hysys dengan perhitungan manual agar mengetahui mana yang paling optimal dan setelah dilakukan keduanya didapatkanlah masih yang berbeda dari hasil keduanya dan yang paling optimal adalah menggunakan perhitungan manual atau menggunakan persamaan neraca massa.</p> <p>&nbsp;</p> <p>PT XXX is the first and only formic acid production plant in Southeast Asia. The production process that takes place at the plant consists of two main stages, namely the methyl formate production stage and the formic acid production stage. The main raw materials used in this production process are carbon monoxide (CO) gas, methanol (CH<sub>3</sub>OH), a catalyst in the form of potassium methoxide (KOCH<sub>3</sub>), and water (H<sub>2</sub>O). Formic acid is one of the chemicals that can be used for industrial purposes, e.g., in the rubber industry, as a natural rubber coagulant; in the pharmaceutical industry, especially for disinfecting drugs; as a preservative; in the textile industry, as a conditioner in the drying and finishing process; in the leather industry, to neutralize lime; and also to acidify animal feed. Therefore, a comparison was made between the Aspen Hysys simulation and the manual calculations to find out which was the most optimal, and after doing both, it was found that there were still different results from both, and the most optimal was to use the manual calculations or to use the mass balance equation.</p> <p>&nbsp;</p> 2024-02-27T00:00:00+07:00 ##submission.copyrightStatement## https://jurnal.uhn.ac.id/index.php/mechanical/article/view/1386 Perencanaan Daya Dan Perbedaan Jenis Bantalan (Bearing) Pada Mesin Pengupas Kulit Kacang Tanah Kapasitas 60 Kg/Jam 2024-02-27T10:31:47+07:00 Richard Alfonso richard.napitupulu@uhn.ac.id Charles S.P Manurung manurungcharles42@gmail.com Suriady Sihombing surihombing@gmail.com Pardingatan Sipayung Sipayung pardingatan.sipayung@student.uhn.ac.id <p>Appropriate technology is technology that is right on target to be used and developed by the community. The development of technology aims to ease human work. The Indonesian state, with the majority of its population working as farmers, really needs appropriate technological innovation to increase agricultural productivity. In this case, the author highlights the low productivity of peanut farmers in Indonesia. On the other hand, the level of peanut demand is increasing from year to year, but consumer demand cannot be met due to low domestic peanut production. Therefore, this study aims to determine the power and bearing maintenance on peanut shell peeling machines using an electric motor, which uses a Tachometer measuring instrument and is carried out at the Production Laboratory of HKBP Nommensen University Medan located at JL. Sutomo No. 4 Medan. The peanut shell peeling machine is made horizontally with 1 shaft and 40 peeling rods transmitted by a V-belt and pulley using an electric motor that functions to peel peanuts to separate the seeds from the shell. By designing and designing a peanut shell peeling machine, the bearing life used in the peanut peeler machine is 3440.78 and 909.86 hours at a rotation speed of 1382 rpm and 58623.94 and 20877.55 hours at a rotation speed of 795.7 rpm. The faster the engine speed, the enumeration load received by the bearing will be lighter, the slower the engine speed, the heavier the enumeration load received by the bearing. The production capacity that can be produced by this peanut shell peeling machine is 60 kg / hour with a peeling force of 51,012 and AC motor power of 1 Hp with a rotation of 2930 rpm.</p> 2024-02-27T00:00:00+07:00 ##submission.copyrightStatement## https://jurnal.uhn.ac.id/index.php/mechanical/article/view/1396 Analisa Kebisingan Pada Alat Berat Wheel Loader Wa-350 Berdasarkan Perbandingan Jarak 50, 100, 150 Cm Dan Kapasitas 2024-02-27T10:31:47+07:00 Suriady Sihombing suriadyhombing@gmail.com Wilson Sabastian Nababan wilson.nababan@uhn.ac.id Miduk Tampubolon MidukTampubolon@uhn.ac.id Cris Stevan Turnip cris.turnip@student.uhn.ac.id <p>Wheel loader is a tool that facilitates work by using hydraulic energy. Wheel loader testing is carried out by looking for noise data arising in the combustion chamber. There are several stages that must be done, namely the first step is to prepare a sound level meter as a noise detection device for heavy equipment, wheel loader, then take measurements with several variations in the distance between the combustion chamber and the sound level meter. In the next step we can find out the noise level read at the sound level meter with ideal, medium, and maximum rotation on the WA-350 wheel loader. So that the Noise Threshold Value according to Permenaker No. per-51 / MEN / 1999, ACGIH, 2008 and SNI 16-7063-2004 is 85 dB. So the noise produced by the Wheel Loader above the NAB Permenaker 104.7dB can cause tingling, unwell, hearing saturation, stomach pain, and circulatory problems. It is recommended that workers are required to use earmuffs or ear muffs.</p> 2024-02-27T00:00:00+07:00 ##submission.copyrightStatement## https://jurnal.uhn.ac.id/index.php/mechanical/article/view/1406 Analisa Pengaruh Pendingin Terhadap Struktur Mikro Dan Sifat Mekanik Pada Baja ST 60 2024-02-27T10:31:47+07:00 Parulian Siagian parulian.nommensen@gmail.com Wilson Sabastian Nababan wilson.nababan@uhn.ac.id Charles S.P Manurung manurungcharles42@gmail.com Partahi Lumbangaol partahinommensen@gmail.com Lestina Siagian lestina.siagian@uhn.ac.id Wany Chytra Manurung wany.manurung@student.uhn.ac.id <p style="margin-left: 1.0cm; text-align: justify;"><span style="font-size: 11.0pt;">The field of industry that produces human needs is growing rapidly. Encouraging increased productivity with iron metal-based machine components. Using quality materials, and certified. This research uses ST 60 steel with a carbon content of 0.48%.. The research process that will be carried out is Heat treatment is needed to minimize failure, change the structure, and form the desired properties, the rapid cooling process to produce a comparison of hardness in material variations, hardness testing to determine the hardness of a material, and observation of microstructure to observe the type of microstructure formed after heat treatment and without heat treatment. After testing, the heat treatment process greatly affects changes in the mechanical properties of the material, as evidenced by the increase in hardness values which initially before the heat treatment process amounted to 194.6 Kgrf / to 255.53 Kgrf / with SAE 40 lubricant cooling media, 220.43 Kgrf / with 50% lubricant cooling media with 50% water mixture, and 300, 7 Kgrf/ with <em>long life coolant </em>media and it is proven that in each material given heat treatment the hardness value has increased as well, before heat treatment the hardness value in ST 60 steel is only 194.6 Kgrf/, experiencing an increase in mechanical properties, namely work with SAE 40 lubricant cooling media with a value of 255.53 Kgrf/, 50% lubricant cooling media with 50% water mixture worth 220.43 Kgrf/ and long life coolant of 300.7 Kgrf/.</span></p> 2024-02-27T00:00:00+07:00 ##submission.copyrightStatement##