Analisa Pengaruh Perubahan dan Pengaturan L/G Terhadap Range, Approach, dan Efektifitas Kinerja Menara Pendingin

  • Diah Wilis Lestaring Basuki Institut Teknologi Nasional Malang
  • Wahyu Panji Asmoro Institut Teknologi Nasional Malang
  • Eko Budi Santoso Institut Teknologi Nasional Malang
Keywords: cooling tower, heat transfer, performance, temperature.

Abstract

Cooling towers are critical heat exchange systems designed to lower water temperature by dissipating heat into the atmosphere. They are classified into two primary types: natural draft and mechanical draft. Natural draft cooling towers, also known as hyperbolic towers, utilize the temperature gradient between the heated water and the surrounding air to drive airflow without mechanical assistance. In contrast, mechanical draft towers incorporate large fans to enhance air circulation and improve heat dissipation. The interaction between air and water, facilitated by fill material, optimizes heat transfer efficiency by increasing contact time. Evaluating the impact of operational adjustments on key performance metrics, including thermal range, approach, and overall efficiency, is essential for enhancing cooling tower performance. Additionally, these systems can serve as refrigerant coolers in air conditioning applications. This study investigates the influence of variations in the liquid-to-gas (L/G) ratio on cooling tower efficiency, with a focus on temperature reduction, thermal range, and approach. Experimental findings demonstrate that adjustments in operational parameters significantly affect these performance indicators. Under the tested conditions, the cooling tower achieved an effectiveness of 70.94%, with a thermal range of 19°C and an approach temperature of 7.8°C.

References

[1] K. S. Vishwakarma, A. S. Bhoyar, S. K. Larokar, V. V Hote, and S. Bhudhbaware, “Study the factors on which
efficiency of cooling tower can be critically acclaimed (A case Study),” Journal of
Engineering Research and Applications - IJERA, vol. 5, no. 4, pp. 73–79, Apr. 2015.
[2] R. S. Putra, “Analisa Perhitungan Beban Cooling Tower Pada Fluida di Mesin Injeksi Plastik,” JTM, vol. 4, no. 2,
pp. 56–62, Jun. 2015.
[3] S. Wahyu, A. Mustain, and M. A. Rizky, “ANALISA PERHITUNGAN EFISIENSI COOLING TOWER 32 T 821 PADA
UTILITAS II PRODUKSI II B PT PETROKIMIA GRESIK,” Distilat, vol. 9, no. 1, pp. 114–119, Mar. 2023, doi:
https://doi.org/10.33795/distilat.v9i1.
[4] F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer, 7th ed. Stamford: Cengage Learning - Global
Engineering, 2011.
[5] P. Ahluriza and N. Sinaga, “Review Pengaruh Range Dan Approach Terhadap Efektivitas Menara Pendingin Unit 2
Di PT. Indonesia Power Kamojang,” Energi dan Kelistrikan: Jurnal Ilmiah, vol.13, no. 2, pp. 141–149, Dec. 2021.
[6] H. P. Siallagan, “Analisis Kinerja Cooling Tower 8330 CT01 pada Water Treatment Plant-2 PT. Krakatau Steel
(PERSERO).TBK,” Jurnal Teknik Mesin (JTM), vol. 6, no. 3, pp. 215–219, Jun. 2017.
[7] O. Triyansah and Y. Witanto, “Efektifitas Cooling Tower Fan 6P-4051-GB di PT. Pupuk Sriwidjaja Sektor STG-BB,
Palembang Sumatra Selatan,” REKAYASA MEKANIK, vol. 4, no. 1, pp. 9–12, Apr. 2020.
[8] Ach. T. H, D. Listyadi, and H. Sutjahjono, “Analisis Beban Kalor Cooling Tower Induced Draft,” Artikel Ilmiah Hasil
Penelitian Mahasiswa Tahun 2014, pp. 1–5, 2014.
[9] Komarudin, R. Saputra, and S. Y. Baskoro, “Analisis Pengaruh Penyerapan Kalor Terhadap Efisiensi Cooling Tower
pada Tungku Induksi Pengecoran Logam di Polman Astra6t,” Bina Teknika, vol. 13, no. 1, pp. 11–21, Jun. 2017.
Published
2025-02-28
How to Cite
Basuki, D., Asmoro, W., & Santoso, E. (2025). Analisa Pengaruh Perubahan dan Pengaturan L/G Terhadap Range, Approach, dan Efektifitas Kinerja Menara Pendingin. SPROCKET JOURNAL OF MECHANICAL ENGINEERING, 6(2), 30-39. https://doi.org/https://doi.org/10.36655/sprocket.v6i2.1853