Simulasi Laju Penguapan Air Laut Secara Natural Menggunakan ANSYS Fluent

  • Hendrik V Sihombing University of Sumatera Utara
  • Himsar Ambarita
  • Horas S Siagian

Abstract

terakhir ini. Hal ini penting dikarenakan dasar dalam perhitungan konsumsi energi pada proses penguapan air maupun umumnya kehilangan massa cairan di suatu reservoir. Pada penelitian ini dilakukan simulasi secara transient, yang bertujuan untuk mengetahui laju penguapan air laut yang terjadi pada sebuah reservoir atau bak penampung, dengan asumsi radiasi matahari yang dianggap telah diserap oleh bak sebagai fluks panas. Simulasi yang digunakan menggunakan metode CFD (computational Fluid Dynamics) multifasa (Volume of Fluid) dengan perangkat lunak Ansys Fluent. Kondisi batas yang digunakan pada simulasi ini dengan kondisi nilai radiasi sebesar 600 W/m2. Pada hasil simulasi dapat diperolah nilai laju perpindahan massa dan laju perpindahan panas, dengan nilai rata-rata laju selama 1 jam, untuk tanpa kipas 2,78671×10-6 kg/s dan 2049,18 J/s.

References

[1] Vinnichenko. N. A., Uvarov. A. V., Vetukov. D. A., Plaksina. Y. Y. (2011) Direct Computation of Evaporation Rate at the Surface of Swimming Pool. Russian Foundation of Basic Reserch Under Grant 1-2.
[2] Fadli, A., Nil, F., (2010) Model Alat Desalinasi Dengan Evaporasi Dan Kondensasi Menjadi Satu Sistem Ruangan. Environmental Engineering of Civil Engineering and Planning. Institute of Technology Sepuluh Nopember Surabaya, 3-4.
[3] Hartanto, W. (2017) Analisa Pengaruh Frekuensi Gelombang Ultrasonik Terhadap Karakteristik Pengeringan Menggunakan Metode Ultrasonik Chill Drying. MALANG, 23-24.
[4] Smith, C., Lof, G., Jones, R. (1994) Measurement And Analysis Of Evaporation From An Inactive Outdor Swimming Pool. Elsevier Science Ltd. USA, 2.
[5] Ambarita. H. (2018) Kajian Numerik Penguapan Pada Evaporator Desalinasi Air Laut Sistem Vakum Alami. Talenta Conference Series: Energy and Engineering, 2-3.
[6] Sayma. A. (2009) Computational Fluid Dynamics. Ventus Publishing Aps, 8-12.
[7] Li. Z., Heiselberg, P. (2005) CFD Simulation for Water Evaporation and Airflow Movement in Swimming Baths. DEPT. OF BUILDING TECHNOLOGY AND STRUCTURAL ENGINEERING. AALBORG UNIVERSITY, 7-9.
[8] M. Moghiman, and A. Jodat, (2007)Effect of air velocity on water evaporation rate in indoor swimming pools, Iran J Mech Eng 8-1, 19-30.
[9] Incropera F.P.(2001) Fundamentas Of Heat and Mass Traansfer, 7th ed, New York : John Wiley & Sons
[10] Holman, J. (1988) Perpindahan Kalor, Edisi Ke-enam . Penerbit Erlangga: Jakarta
[11] Jansen, Ted J. (1995) Teknologi Rekayasa Surya. Prof. Wiranto Arismunandar, Penterjemah. Jakarta: PT. Pradnya Paramita
[12] Ambarita, Himsar. (2011). Perpindahan Panas Konveksi dan Pengantar Alat Penukar Kalor. Medan : Departemen Teknik Mesin FT USU
[13] Mc. Cabe, W. L. D. Horriot, and J. C. Smith. (1985) Unit Operation Of Chemical Engineering. Fourth Edition. Mc. Graw Hill Internasional Book Company. New York
[14] Earle, R. L. (1982) Unit Operation In Food Processing. Ellis Howard Limited. England
[15] Ambarita, H. (2017) Perpindahan Panas dan Massa Penyelesaian Analitik dan Numerik”. Malang:Inteligensia Media, 1-8.
[16] Ansys 2020 R2 Helps Users Collaborate on Multiphysics Simulation”
[17] Çengel, Y. A., Ghajar, A. J. (2015) Heat and Mass Transfer: Fundamentals & Applications, Fifth Edition. New York: McGraw-Hill Education, 839-843.
[18] Tuakia, F. (2008) Dasar-dasar CFD Menggunakan FLUENT. Informatika, Bandung.
[19] Maryanto. (2019) Investigasi Simulasi 3 Dimensi Karakteristik Aliran Pada Model Geometri Pompa Hidram Menggunakan Computational Fluid Dynamics. Skripsi. Fakultas Sains dan Teknologi, Universitas Sanata Dharma Yogyakarta.
[20] Liu dan Husain, T.T. (2012) Discretization: An Enabling Technique. Arizona: Departement of Computer Science and Engineering-arizona state University.
Published
2024-08-30
How to Cite
Sihombing, H., Ambarita, H., & Siagian, H. (2024). Simulasi Laju Penguapan Air Laut Secara Natural Menggunakan ANSYS Fluent. SPROCKET JOURNAL OF MECHANICAL ENGINEERING, 6(1), 1-9. https://doi.org/https://doi.org/10.36655/sprocket.v6i1.1602